

 Navigation

 	Script of Scripts

 Specification of SoS format version 1.0.

Terminology & Grammar

	Script: A SoS script that defines one or more workflows.

	Workflow: A sequence of processes that can be executed to complete certain task.

	Step: A step of a workflow that perform one piece of the workflow.

	Step options: Options of the step that assist the definition of the workflow.

	Step input: Specifies the input files of the step.

	Step output: Specifies the output files of the step.

	Step dependencies: Specifies the files that are required by the step.

	Step process: The process that a step executes to complete specified work, specified as one or more Python statements.

	Action: SoS or user-defined Python functions. They differ from regular Python functions in that they may behave differently in different running mode of SoS (e.g. ignore when executed in dryrun mode).

The SoS syntax obeys the following grammar, given in extended Backus-Naur form (EBNF):

`
Script = {comment}, {statement}, [parameter_step], {step};
comment = "#", text, NEWLINE
parameter_step = "[parameters]", NEWLINE, {[comment], assignment}
assignment = name, "=", expression, NEWLINE
`

That is to say, a SoS script contains comments, statements, an optional parameter step with multiple assignment statements, and one or more SoS steps. Here name, expression and statement are arbitrary [Python](http://www.python.org) names, expression and statements with added SoS features. SoS requires Python 3 and does not support Python 2.x specific syntax

```
step           = step_header,


{comment},
{{statement}, [input | output | depends ]},
[process, NEWLINE, {script} ]


step_header    = “[”, names, [”:”, names | options], “]”, NEWLINE
input          = “input”, ”:”, [expressions], [”,”, options], NEWLINE
output         = “output”, ”:”, [expressions], [”,”, options], NEWLINE
depends        = “depends”, ”:”, [expressions], [”,”, options], NEWLINE
process        = “process” | name, ”:”,  [options]
names          = name, {”,”, name}
workflow       = name, [‘_’, steps], {“+”, name, [‘_’, steps}
assignment     = name, “=”, expression, NEWLINW
expressions    = expression, {”,”, expression}
options        = option, {”,” option}
option         = name, “=”, expression
```

A SoS step consists of a header with one or more names, optional options. The body of a SoS step consists of optional comments, statements, input, output, or depends parameters, followed by step process.

This documentation is a comprehensive reference to all SoS features. Please refer to this [SoS quick start tutorial](https://github.com/bpeng2000/SOS/wiki/Quick-Start) to learn some basics of SoS before diving into the details.

Language (Python)

SoS uses [Python](http://www.python.org) expressions and statements. If you are unfamiliar with Python, you can learn some basics of Python, usually in less than half a day, by reading some Python tutorials (e.g. [the official python tutorial](https://docs.python.org/3/tutorial/)). This [short introduction](https://docs.python.org/3/tutorial/introduction.html) is good enough for you to use SoS.

SoS makes two modifications to standard Python syntax.

	String literals quoted by single triple quotes (‘’’ ‘’‘) are considered to be raw strings.

	String literals are format string that will be [interpolated](#string-interpolation) using SoS defined sigil.

These changes are made to make the inclusion of scripts easier in a SoS script and are only effective for Python statements in SoS scripts. Modules defined and imported in other python files are interpreted by a standard Python interpreter.

Raw multi-line strings

Whereas the following string literal in regular python

`python
'''A multiline string with \n
and newline'''
`

would be treated as

`python
'A multiline string with \n\nand newline'
`

SoS will treat it as

`python
'A multiline string with \\n\nand newline'
`

so that it can be sent to the underlying interpreters as it is. Basically, SoS does not require the raw string prefix r for multiple line strings quoted by triple single quotation marks.

String interpolation

On top of python string manipulation functions and similar to recently introduced (Python 3.6) format string, SoS uses string interpolation to replace variables and expressions within a string with their values. For example, expressions resource_path, sample_names[0] and sample_names would be replaced by their values in the following string definitions.

```python
resource_path = ‘~/.sos/resources’
ref_genome    = ‘${resource_path}/hg19/refGenome.fasta’     # ‘~/.sos/resources/hg19/refGenome.fasta’

sample_names  = [‘A’, ‘B’, ‘C’]
title         = ‘Sample ${sample_names[0]} results’         # ‘Sample A results’
all_names     = ‘Samples ${sample_names}’                   # ‘Samples A B C’
```

Depending on the return type of the expression

	String representations (repr(obj)) are returned for objects in simple Python types (e.g. string, True, False, None, numeric numbers)

	For objects with an iterator interface (e.g. Python list, tuple, dict, and set), SoS join the string representation of each item by a space or comma as specified by conversion flag !, (see [conversion and format](#conversion-and-format) for details). More specifically,
	List of strings will be converted to a string by joining strings with a space or comma.

	Dictionary of strings will be converted to a string by joining dictionary keys with no guarantee on the order of values.

If you are unhappy with the string conversion, you can always format your object using python expressions such as ${repr(obj)} and ${‘, ‘.join(x for x in obj)}.

SoS supports nested interpolation, for example

`python
'${_input[${index}]}'
`

would evaluate ${index} and then ${_input[?]} where ? is the result of ${index}.

Note that you can continue to use Python string functions such as

`python
ref_genome = resource_path + '/hg19/refGenome.fasta'
title = 'Result for the first sample {} is invalid'.format(sample_names[0])
`

but string interpolation is recommended for multi-line scripts because it is easier to read.

Conversion and format

SoS interpolation also support all string format and conversion specification as in the [Python string format specifier](https://docs.python.org/2/library/string.html#formatspec), that is to say, you can use : specifier at the end of the expression to control the format of the output. For example

	${1/3. :.2f} in a string literal yields 0.33 instead of its long representation 0.3333333333333333, and

	${filename!r} in a string literal yields ‘Article by “Jane Eyre”’ (note the quotation mark) if filename=’Article by “Jane Eyre”’.

The latter is interesting because SoS uses correct quotation marks for filenames with quotation marks, making

`python
R('''
read.csv(${_input!r})
''')
`

a safer choice than

`python
R('''
read.csv("${_input}")
''')
`

because ${_input} might contain quotation marks.

SoS supports !q (quoted) conversion that converts filenames to proper filenames that can be safely used in shell command. For example, the following command

`python
run('cat ${_input!q}`)
`

would produce the correct command and execute

`
cat 'Bon Jovi.txt'
`

instead of

`
cat Bon Jovi.txt
`

for _input=[‘Bon Jovi.txt’].

SoS also supports a , conversion flag that can be appended to !r, !q, !s (for string representation of a Python object) or just !. This tells SoS to join items of sequences by comma instead of a space. For example, sequences results in the following example are joint by ‘,’:

```python
items   = [‘A’, ‘B’, ‘C’]
inames  = ‘${items}’               # A B C
inames  = ‘${items!,}’             # A,B,C
inames  = ‘${items!r,}’            # ‘A’,’B’,’C’

files   = [‘AB.txt’, ‘C D.txt’]
fname   = ‘${files!q,}’            # AB.txt,CD.txt or AB.txt,’C D.txt’
```

If the default sigil conflicts with the script used, an alternative sigil can be used. Please see section [option sigil](#option-sigil) for details.

File header

A SoS script usually starts with lines

`python
#!/usr/bin/env sos-runner
#fileformat=SOS1.0
`

The first line allows the script to be executed by command sos-runner if it is executed as an executable script. The second line tells SoS the format of the script. The #fileformat line does not have to be the first or second line but should be in the first comment block. SOS format 1.0 is assumed if no format line is present.

Comments

Comments in a SoS script are mostly meaningful, meaning that they will be displayed in output of commands such as sos show script. More specifically

	Script description: Description of SoS script consists of comment blocks after the shabang block and before any workflow description or SoS statement.

	Workflow descriptions: Description of individual workflows consists of comment blocks after a comment line with only workflow name and before any SoS statement. Workflow descriptions can be put at the front of the script or between sections.

	Step description: Comments after section head and before the first SoS statement are step descriptions/

	Parameter description: Comments before each parameter in the [parameters section](#command-line-options) are parameter descriptions.

For example,

```python
#!/usr/bin/env sos-runner
#fileformat=SOS1.0

# This is a demo script for SoS comments.

# human
# align raw reads to human genome
[parameters]
# path to STAR
star_path = ‘~/bin/STAR’

[*_1]
# prepare index
run:


command1


[human_2]
# align reads to human genome
run:


command2


# mouse
# align raw reads to mouse genome
[mouse_2]
# align reads to mouse genome
run:


command3


```

defines two workflows (human and mouse). Assuming the sos script is named test.sos, the output of command sos show test.sos would be

```
This is a demo script for SoS comments.

Available workflows: human, mouse
Workflow human:  align raw reads to human genome



	Parameters:

	star_path         path to STAR  (default: ‘~/bin/STAR’ )



Step human_1:       prepare index
Step human_2:       align reads to human genome





	Workflow mouse:  align raw reads to mouse genome

	
	Parameters:

	star_path         path to STAR  (default: ‘~/bin/STAR’ )



Step mouse_1:       prepare index
Step mouse_2:       align reads to mouse genome





```

Global definitions

Python functions, classes, variables can be defined or imported (using Python import statement) before any SoS step is defined. These definitions usually contains variables such as version and date of the script, paths to various resources, and utility functions that will be used by later steps. They will be executed before each step process. In addition, variables defined globally are readonly and change of these variables in later steps will trigger an error.

In addition to user-defined global variables, SoS defines the following variables before any variables are defined

	`SOS_VERSION`: version of SoS command.

	`CONFIG`: A dictionary of configurations specified by command line option -c config_file. The configuration file should be in the format of [YAML](http://yaml.org/) or its subset format [‘JSON’](http://json-schema.org/implementations.html). Inside SoS script you can access these variables via, for example, either CONFIG[‘gatk_path’] or CONFIG.gatk_path.

Command line options

Optional arguments

SoS looks for a [parameters] section for command line options and their default arguments. The format of each variable is

`
comment
var_name = default_value
`

The default value can be number, string, list of string, or expressions that return values of these types. Other types can be used as long as they can be converted to these types from user-provided values. For example

`
path to tool gatk
gatk_path = '~/bin/GATK'
`

defines a variable gatk_path with default value ‘~/bin/GATK’.

`
A list of sample names
sample_names=[]
`

defines a variable sample_name with default value []. And

`python
path to gatk
gatk_path=CONFIG['gatk_path']
`

uses gatk_path from a YAML/JSON-based configuration file (specified from command line using option -c) as default value. You can set default value for CONFIG inside SoS script via:

`python
path to gatk
gatk_path=CONFIG.get('gatk_path', '/default/path/to/gatk')
`

so that if configuration files are not supplied the default value /default/path/to/gatk will be used.

The default values not only determines the values of variable when they are not specified from command line or configuration files, but also determines the type of input these parameters accept. For example, with the above definitions for command arguments –gatk_path and –sample_names, you can pass values to these variables from command line,

`bash
sos run myscript.sos --gatk_path /path/to/gatk --sample_names A1 A2 A3
`

A list will be passed to sample_names even if only a single value is provided (e.g. sample_names=[‘A1’] for –sample_name A1).
Attempts to pass more than one values (a list) to gatk_path (e.g. –gatk_path /path1 /path2) will trigger an error.

Note that bool values can be specified from command line as yes, true, t, 1 (case insensitive) for True and no, false, f, 0 for False.

Required arguments

In cases where there is no suitable default values and/or command line arguments are mandatary, you can list the type of arguments (e.g. int, bool, str, list of strings) in place of default values. For example, if an integer parameter cutoff is required, you can define it as

`python
cutoff value
cutoff = int
`

This will force the users to provide an integer to this parameter. You can do the same for lists but SoS assumes that you need a list of strings. For example, the following definition

`python
input bam files
bam_files = list
`

request a list of strings from command line. SoS will return a list even if only one value is provided.

Workflow definitions

A SoS script can specify one or more workflows. Each workflow consists of one or more numbered steps. The numbers (should be non-negative) specify the logical order by which the steps are executed, but a later step might be executed before the completion of previous steps if it does not depend on the output of these steps.

Single workflow

A single workflow can be specified without a name in a SoS script. For example, the following sections specify a workflow with four steps 5, 10, 20, and 100.
As you can see, the workflow steps can be specified in any order and do not have to be consecutive (which is actually preferred because it allows easy insertion of extra steps).

`
[5]
[20]
[10]
[100]
`

Workflows specified in this way is the default workflow and are actually called default in SoS output. If you want to give it a meaningful name, you can specify the steps as

`
[mapping_5]
[mapping_20]
[mapping_10]
[mapping_100]
`

Because this SoS script defines only one workflow (mapping), you do not have to specify the name of workflow from SoS command

`bash
sos run myscript.sos --input input1.fasta
`

Unnumbered workflow steps are assumed to be the first (with index 0) of a workflow unless they have other meanings (e.g. parameters or
[auxiliary step](auxiliary-workflow-steps-and-makefile-style-dependency-rules)).

Multiple workflows

A SoS script can define multiple workflows. For example, the following sections of SoS script defines two workflows named mouse and human.

`
[mouse_10]
[mouse_20]
[mouse_30]
[human_10]
[human_20]
[human_30]
`

You will have to specify which workflow to execute from the command line, e.g.

`bash
sos run myscript mouse --input input1.fasta
`

If you would like to define a default and a named workflow, you can define them as

`
[10]
[20]
[30]
[test_10]
[test_20]
[test_30]
`

The default workflow will be executed by default using command

`bash
sos run myscript.sos
`

The test workflow will be executed if its name is specified from the command line

`bash
sos run myscript.sos test
`

Shared workflow steps

The most common motivation of defining multiple workflows in a single SoS script is that they share certain processing steps. If this is the case, you can define sections such as

`
[mouse_10,human_10]
[mouse_20]
[human_20]
[mouse_30,human_30]
`

or

`
[*_10]
[mouse_20]
[human_20]
[*_30]
`

or

`
[*_10]
[mouse_20,human_20]
[fly_20]
[*_30,fly_50]
[fly_40]
`

In the last case, step defined by [*_30,fly_40] will be expanded to mouse_30, human_30, fly_30, and fly_50 and will be executed twice for the fly workflow. Note that workflow steps can use variable step_name to act (slightly) differently for different workflows. For example,

```python
[mouse_20,human_20]
reference = mouse_reference if step_name.startswith(‘mouse’) else human_reference

input: fasta_files
depends: reference

```

Here the variable step_name is mouse_20 or human_20 depending on the workflow being executed, and expression mouse_reference if step_name.startswith(‘mouse’) else human_reference returns mouse_reference if the workflow mouse is executed, and human_reference otherwise.

Subworkflow

Although workflows are defined separately with all their steps, they do not have to be executed in their entirety. A subworkflow refers to a workflow that is defined from one or more steps of an existing workflows. It is specified using syntax workflow[_steps] where step can be n (step n), -n (up to n), n-m (step n to m) and m- (from m). For example

`
A # complete workflow A
A_5-10 # step 5 to 10 of A
A_50- # step 50 up
A_-10 # up to step 10 of A
A_10 # step 10 of workflow A can be considered a subworkflow
`

Combined workflow

You can also combine subworkflows to execute multiple workflows one after another. For example,

`python
A + B # workflow A, followed by B
A_0 + B # step 0 of A, followed by B
A_-50 + B + C # up to step 50 of workflow A, followed by B, and C
`

This syntax can be used from the command line (option workflow, e.g. sos-runner myscript.sos align+call) or used to execute [nested workflows](#nested-workflow) inside the SoS script. Note that parameters steps of each subworkflow will be executed before it. For example,

`python
A_0 + B
`

will execute parameters step of A (with command line arguments), step 0 of A, parameters step of B (with command line argument), and all steps of B. Command line arguments might be used multiple times and SoS is not be able to identify misspecified (and thus unused) arguments in this case.

It is worth noting that combined workflow might work differently from when they are executed individually (e.g. default input of B is changed from empty to output of A_0), and it is up to the user to resolve conflicts between them (e.g. the same parameters with different types might be used in the workflows). Running a combined workflow in dryrun mode is always a good idea to test complex workflows.

Nested workflow

SoS also supports nested workflow in which a complete workflow is treated as part of a step process.
The workflow is execute by SoS action sos_run, e.g.

`
sos_run('A') # execute workflow A
sos_run('A + B') # execute workflow B after A
sos_run('D:-10 + C') # execute up to step 10 of D and workflow C
sos_run('${aligner} + ${caller}') # execute user-specified aligner and caller workflows
`

In its simplest form, nested workflow allows you to define another workflow from existing ones. For example,

`python
[default]
sos_run('align+call')
`

defines a nested workflow that combines workflows align and call so that the workflow will by default execute two workflows, but can also execute one of them as separate workflows align and call.

Nested workflow also allows you to define multiple mini-workflows and connect them freely. For example

`python
[a_1]
[a_2]
[b]
[c]
[d_1]
sos_run('a+b')
[d_2]
sos_run('a+c')
`

defines workflows d that will execute steps d_1, a_1, a_2, b_0, d_2, a_1, a_2, and c_0. The parameters step for each workflow will be executed before any step in the workflow is executed.

Nested workflows, like other SoS actions, can be executed repeatedly, for example,

```
[b_1]
[b_2]
[b_3]

[a]
parameters = range(20)
input: ‘some.txt’, for_each=’parameters’
output: ‘${input}_${_parameters}.res’
sos_run(‘b’)
```

would execute the complete workflow b 20 times each with a different parameter. Similarly you can let the nested workflow process groups of input files.

Nested workflows can also be used to compose workflows from user-provided options through command line arguments, configuration files, and even results from previous steps. For example, the following example

```
[parameters]
# aligner steps to use to align the reads
aligner = CONFIG.get(‘aligner’, ‘bwa’)

[bwa_1]
[bwa_2]
[novaalign_1]
[novaalign_2]

[align]
sos_run(aligner)
```

defines workflows bwa and novaalign to align raw reads. The align workflow is a master workflow that executes bwa or novaalign determined by option aligner defined in a configuration file (command line option -c) and command line option –aligner.

Finally, if all or part of a nested work is defined in another script, you can specify it using the source step option. For example, the following step defines a default workflow that combined two workflows defined in call.sos and align.sos.

`
[default]
sos_run('call+align', source=["call.sos", "align.sos"])
`

The parameters steps of the current sos script and from call.sos and align.sos will be executed before default, call and align workflows, respectively.

The source option of the example essentially inserts the specified scripts into the existing script and might introduce conflicting workflows or workflow steps. A safer way to execute workflows from other scripts is to import them with an alias (namespace), using the dictionary form of option source. For example, if both call.sos and align.sos defines a default workflow, you will have to call them as follows:

`
[default]
sos_run('call.default + align.default', source={'call': 'call.sos', 'align': 'align.sos'})
`

Workflow steps

Although no item is required for a SoS step, a complete SoS step can have the following form

```
[name_step: option1, option2, ...]
#
# description of the step
#

statements
input:    input files, opt1=value1, opt2=value2

statements (executed in SoS)
output:   output files, opt1=value1, opt2=value2

statements (executed in SoS)
depends:  dependent files, opt1=value1, opt2=value2

statements (executed in SoS)
process/action:  opt1=value1, opt2=value2

statements or script (can executed in separate process)

action:
script

```

Basically, a step can have input, output, depends, process keywords with their options, with arbitrary Python statements before and in between, followed by a step process with one or more step actions.

Step options

Step options are specified after step name that assists the specification of workflows. SoS provides the following options

Option skip

Option skip takes two formats, the first format has no value

`
[10: skip]
`

and is equivalent to

`
[10: skip=True]
`

The whole step will be skipped as if it is not defined at all in the script. This option provides a quick method to disable a step.

The second format takes a value, which is usually an expression that will be evaluated when the step is executed. For example, in the following workflow,

```
[parameters]
# tool suite to align the reads
quality_check = True

[10: skip= not quality_check]
```

Step 10 will be skipped if option –quality_check no is specified from command line.

Option sigil

Because a SoS script can include scripts in different languages with different sigils (special characters used to enclose expression), SoS allows the use of different sigils in the script. Whereas the default sigil (${ }) has to be used for global variables, other sigils can be used for different sections of the script. For example

```python
[step_10: sigil=’%( )’]
title = ‘Sample %(sample_names[0]) results’
run:


for file in *.fastq
do


echo Processing ${file} ...
echo %(title)


done




```

uses a different sigil style because the embedded shell script uses ${ }. In this example ${file} keeps its meaning in the shell script while %(sample_names[0]) and %(title) are replaced by SoS to their values.

Option sigil accept only a constant string (not a variable or expression).

Option alias

SoS executes each step in a separate process and by default does not return any result to the master SoS process. If an option alias is specified with a name, a SoS step will return an object with specified name and attributes name, input, depends, output, and all variables defined in the step. The value of this option should be a quoted string (e.g. alias=’align’). For example, the following step assigns index (10), input (fasta_files), output ([‘accepted_reads.bam’, ‘summary.stat’]) to variable align so that a later step can refer to it.

```python
[10: alias=’align’]
input: fasta_files
output: ‘accepted_reads.bam’, ‘summary.stat’

result=’success’
run(‘align ${input}’)

[20]
input: align.output


	if align.result == ‘success’:

	# do something



```

Note that the returned object is readonly and cannot be changed in another step.

Option target (Not implemented)

This option turns the step into an [auxiliary step](Format-Specification#auxiliary-workflow-steps-and-makefile-style-dependency-rules) that is not part of the workflow but will be called if the target file is not required but does not exist.

Step input

Input files

The input of SoS step follows the following rules:

	the input of a SoS step is by default the output of the previous step, which is [] for the first step.

	`input` option, which could be a list of filenames (string literal, variables, or expressions that return filenames). Wildcard characters (*, which matches everything and ?, which matches any single character) are always expanded. Nested lists are flattened.

Examples of input specification are as follows:

```
input: []

input: ‘file1.fasta’, ‘file2.fasta’

input: ‘file*.fasta’, ‘filename with space.fasta’


	input:

	‘file*.txt’,
‘directory/file2.txt’



input: aligned_reads

input: aligned_reads, reference_genome

input: aligned_reads[2:]

input: ‘data/*.fastq’

input: ‘/GXT.fastq’

input: func(parameter)
```

It is worth noting that

	The first examples shows that the step does not need any input file (so it does not depend on any other step).

	It does not matter if aligned_reads and reference_genome are strings or lists of strings because SoS will flatten nested lists to a single list of filenames.

	The input option tries to expand filenames with wildcard characters (* and ?). This can be very useful for workflows that, for example, regularly scan a directory and process unprocessed files. However, because the value of this step depends on availability of files, the output of sos show script and the execution path will be unpredictable, and even wrong if there is no available file during the execution of sos show script. Option dynamic is required for such input files if they are meant to be determined at runtime.

The input files will be evaluated and form a list of input files. They are by default sent to the step process all at once as varible _input, but can also be sent in groups, each time
with different _input. Here _input is a temporary variable that is available only within the step.

Option filetype

SoS allows the specification of input options, which are appended to input file list as comma separated name=value pairs.

Option filetype accepts one or more filetypes or a lambda function. For example,

```
[step]
input:


input_files, filetype=’*.fastq’


```

passes only files with extension *.fastq.

```
[step]
input:


input_files,
filetype=[‘.fastq’, ‘.fastq.gz’]


```

passes only files with extension .fastq or .fastq.gz. Under the hood SoS treats the pattern as Unix shell-stype wildcard pattern (with *, ?, [seq] and [!seq], see [doc](https://docs.python.org/2/library/fnmatch.html#module-fnmatch) for details) so

	`filetype=’.txt’` does not match `file.txt`

	filetype=’*.fastq*’ matches a.fastq, a.fastq.gz and a.fastq.zip

	filetype=’[!_]*.txt’ matches file1.txt but not _file1.txt

If you need more refined control over the selection of files, you can use lambda functions (a bit python knowledge is required). For example,

```
[step]
input:


input_files,
filetype=lambda x: open(x).readline().startswith(‘##fileformat=VCF4.1’)


```

passes only files with the first line starting with string ##fileformat=VCF4.1`.

Option group_by

SoS by default passes all input files to step process as a single list. Option group_by pass input files in groups, each time with a subset of input files named _input. SoS allows you to group input by individual file (single), pairs, pairwise, and combinations. For example, with the following sos script

```
[parameters]
# how to group input files
group = ‘all’

[0]
print(‘group_by=${group}’)
input: ‘file1’, ‘file2’, ‘file3’, ‘file4’, group_by=group
print(‘${_index}: ${_input}’)
```

The output of commands are

```
$ sos dryrun test.sos  -v0
group_by=all
0: file1 file2 file3 file4

$ sos dryrun test.sos –group ‘single’ -v0
group_by=single
0: file1
1: file2
2: file3
3: file4

$ sos dryrun test.sos –group ‘pairwise’ -v0
group_by=pairwise
0: file1 file2
1: file2 file3
2: file3 file4

$ sos dryrun test.sos –group ‘pairs’ -v0
group_by=pairs
0: file1 file3
1: file2 file4

$ sos dryrun test.sos –group ‘combinations’ -v0
group_by=combinations
0: file1 file2
1: file1 file3
2: file1 file4
3: file2 file3
4: file2 file4
5: file3 file4
```

Obviously, the output of the pairs cases depends on the order of files. If you need to pair files in any particular order, you can control it in input. For example

```
[step]
input:


sorted([x for x in fastq_files if ‘_R1_’ in x]),
sorted([x for x in fastq_files if ‘_R2_’ in x]),
group_by=’pairs’


run(‘echo ${input}’)
```

will take all input files and sort them by _R1_ and _R2_ and by filename, and pair them.

Option for_each

Option for_each allows you to repeat step process for each value of a variable. For example,

`
[0]
method = ['m1', 'm2']
input: 'file1', 'file2', for_each='method'
print('${_index}: ${_input} ${_method}')
`

will repeat the step with each item of variable method

`
$ sos dryrun test.sos -v0
0: file1 file2 m1
1: file1 file2 m2
`

Note that the SoS automatically creates a loop variable _method for variable method. If the variable is an attribute of an object (e.g. aligned.output), the iterator variable will be named without the attribute part.

Nested loops are also allowed. For example,

`python
[0]
method = ['m1', 'm2']
pars = [1, 2]
input: 'file1', 'file2', for_each=['method', 'pars']
print('${_index}: _input=${_input} _method=${_method}, _pars=${_pars}')
`

would produce

`
$ sos dryrun test.sos -v0
0: _input=file1 file2 _method=m1, _pars=1
1: _input=file1 file2 _method=m2, _pars=1
2: _input=file1 file2 _method=m1, _pars=2
3: _input=file1 file2 _method=m2, _pars=2
`

If you would like to loop the process with several parameters, you can put them into the same level by ‘var1,var2’. For example,

`python
[0]
method = ['m1', 'm2']
pars = [1, 2]
input: 'file1', 'file2', for_each='method,pars'
print('${_index}: _input=${_input} _method=${_method}, _pars=${_pars}')
`

would produce

`
$ sos dryrun test.sos -v0
0: _input=file1 file2 _method=m1, _pars=1
1: _input=file1 file2 _method=m2, _pars=2
`

Option paired_with

Input files might might come with additional information such as sample type, and sample name, and you can pair these information to input files using the paired_with option. For example, bam_files in the following example have matched mutated and sample_name, you can atteched these information to groups of input files _input with looped paired with variables.

```
[0]
bam_files = [‘case/A1.bam’, ‘case/A2.bam’, ‘ctrl/A1.bam’, ‘ctrl/A2.bam’]
mutated = [‘case’, ‘case’, ‘ctrl’, ‘ctrl’]
sample_name = [‘A1’, ‘A2’, ‘A1’, ‘A2’]

input: bam_files, paired_with=[‘mutated’, ‘sample_name’], group_by=’pairs’

print(‘${_index}: _input=${_input} _mutated=${_mutated}, _sample_name=${_sample_name}’)
```

Output:

`
$ sos dryrun test.sos -v0
0: _input=case/A1.bam ctrl/A1.bam _mutated=case ctrl, _sample_name=A1 A1
1: _input=case/A2.bam ctrl/A2.bam _mutated=case ctrl, _sample_name=A2 A2
`

Similar to option for_each, if the variable is an attribute of an object (e.g. aligned.output), the iterator variable will be named without the attribute part (e.g. _aligned for paired_with=’aligned.output’).

Option pattern

This option uses named wildcards to match pattern to all input files, and creates step variables for these wildcard objects. For example,

`python
[step]
input: 'a-20.txt', 'b-10.txt', pattern = '{name}-{par}.txt'
output: pattern = '{name}-processed-{par}.txt'
run('echo ${output}; touch ${output}')
`

will take all input files and extract name and par from each file name as variables name and par. It is then used to create output file names adding the word processed in between these wildcard objects. The outcome of the SoS script above is creation of files a-processed-10.txt and b-processed-20.txt.

When wildcard objects are accessed as step variables, both variable names with and without _ prefix is available, e.g. in this example, both _name and name, _par and par are avaiable and are the same. The two conventions will only differ when [group_by](Documentation#option-group_by) or [‘for_each’](Documentation#option-for_each) is also used.

`python
[step]
input: 'a-20.txt', 'b-10.txt', pattern = '{name}-{par}.txt', group_by='single'
output: pattern = '{_name}-processed-{_par}.txt'
run('echo ${_output}; touch ${_output}')
`

Option pattern supports multiple pattern matching with different wildcards. For example:

`
[step]
input: 'a-20.txt', 'b-10.txt', pattern = ['{name}-{par}.txt', '{base}.{ext}']
output: pattern = ['{name}-processed-{par}.txt', '{base}-{ext}.out']
run('echo ${_output}; touch ${_output}')
`

will produce 4 files: a-processed-20.txt, b-processed-10.txt, a-20-txt.out, b-10-txt.out, due to multiple pattern specifications.

Please note that the sigil {} is exclusively used for named wildcards and you should not use ${} because it will be interpreted as strings.

Option skip

Option skip takes either a constant (True or False) or a function. Option skip=True will make SoS skip the execution of the current step. Using skip=True is not very useful so this option is often used with a SoS variable. For example

```python
[10]
input:


fasta_files,
skip=len(fasta_failes) == 1


output: ‘merged.fasta’

run(‘command to merge multiple fasta files.’)

```

Here the skip option gets the value of True if there is only one input file. The command to merge multiple input files would then be skipped.

Another use of option skip is to assign it a function. In this case, this function will be applied
to each input group with _input as the first variable and all paired_with, pattern, loop variables (e.g. _loopvar) as keyword arguments. The input group will be skipped if this function returns False. For example,

```
[10]
def filter_group(ifiles, **kwargs):


return all(os.path.getfile(x) > 0 for x in ifiles)


input: group_by=’combinations’, skip=filter_group
```

will check all input groups and skip groups with one or two empty files (file size = 0).

Option dynamic

In order to determine the best execution strategy, SoS evaluates all expressions for all steps before the execution of a workflow to figure
out input and output of steps. This works most of the time but sometimes the input of a step can only be determined at runtime. For example,
if you would like your workflow to automatically scan an input directory and process all fasta files under it, or if a previous step produces
files that cannot be determined beforehand, you can specify input files as follows,

`python
input: 'input/*.fasta'
`

The problem is that no file or a wrong set files might exist during the planing stage so SoS might skip this step or start the step
with a wrong set of files. To address this problem, you can declare the input of this step as dynamic by passing option
dynamic=True to it,

`python
input: 'input/*.fasta', dynamic=True
`

This tells SoS that the input of this step can only be determined at runtime and will execute the step only after all its previous
steps have been completed.

Summary

Options of step input are evaluated in the following orders:

	A list of input files, if specified, would replace input, which is by default output from the previous step.

	Option filetype filters input files. The output becomes `input`.

	Option group_by groups the files into several groups, named _input

	Option for_each repeat _input for each loop var, named _loopvar if for_each=’loopvar’.

	
	Option paired_with pairs one or more variables with input, variable paired is paired with input

	and variable _paired is paired with _input in each loop if paired_with=’paired’

	
	Option pattern extract variables from filenames in input. Variable extracted is paired with input

	and variable _extracted is paired with _input in each loop if pattern=’{extracted}_other_part’.

	Option skip optionally skip all or part of the input groups.

The differences between looped and non-loop steps are sumarized in the following figure

[[/media/step_loop.jpg]]

Step output

Output files

Output files of a step can be specified by step output. Whereas step input override or
change SoS provided variable input to produce one or more variable _input,
the step output specify output which should be [] if no output is generated
(or of interest). Similar to input, step output accepts strings, variables, expressions, and allows wildcard characters. For example, the following are acceptable output files

```python
output:  []

output:  ‘accepted_hits.bam’

output:  aligned_reads, bam_stats

output:  ‘aligned/*.bam’
```

In case of input loop, step output actually generates variables _output for each input loop. output
is the sum of all _output with duplicated filenames removed. For example, the following
step accepts one or more bam files and index them using command samtools index. The input files are passed one
by one so generate multiple output files (‘${_input}.bai’). The output of this step is then the collection of
all such output files.

```python
[10]
input:


bamfiles, group_by=’single’



	output:

	‘${_input}.bai’



run(‘’‘samtools index ${_input} ‘’‘)
```

Note that you can specify all output files, e.g.

`python
output: [x + '.bai' for x in bamfiles]
`

but specifying _output for each _input is usually easier and allows better execution of the repeated
steps.

Option pattern

Option pattern treats variables in {} in the passed patterns (more than one pattern is allowed) as wildcard variables and generate output filenames from items of these variables. For example, if samples=[‘A’, ‘B’, ‘C’] and temp=[10, 20, 20],

`
pattern='{}-{}-result.txt'
`

would produce three output files.

`
A-10-result.txt
B-20-result.txt
C-20-result.txt
`

This feature is usually used with [input pattern](Documentation#option-pattern) to derive output files from input files.

Option dynamic

Similar to the cases with [dynamic input files](#dynamically-determined-input-files-option-dynamic), the
output of some steps could also not be determined beforehand. For example, with the following script that generates html files that cannot be determined during dry run,

```python
[0]
run:


rm -f *.html


[10]
input: []
output: ‘*.html’

import random
for i in range(5):


run(‘touch result_${random.randint(1, 20)}.html’)


```

SoS will determine that you do not have any output file (no *.html file) and produce the following output

`bash
$ sos run test.sos
INFO: Execute default_0:
INFO: input: []
INFO: output: unspecified
INFO: Execute default_10:
INFO: input: []
WARNING: *.html does not expand to any valid file.
INFO: output: []
`

In this case, you will need to append option dynamic=True to the step output

```
[0]
run:


rm -f *.html


[10]
input: []
output: ‘*.html’, dynamic=True

import random
for i in range(5):


run(‘touch result_${random.randint(1, 20)}.html’)


```

so that SoS knows that the output can only be determined after the completion of the step. Because of this, variable output is unavailable to the step process.

Step dependencies

This item specifies files that are required for the step. Although not required, it is a good practice to list resource files and other dependency files for a particular step. For example

```python
[10]
input:


fasta_files



	depends:

	reference_seq



```

Similar to output options, dependent files can also be defined after input options and consist of
dependent files determined from loop variables.

The following figure summarizes the effect of input
and output options and input options group_by and for_each on the flow
of input and output files and related variables.

[[/media/step_options.jpg]]

Step process

Step process

The process marks the beginning of step process, with optional runtime options to control its execution. For example,

```
[10]
input: group_by=’single’
process: concurrent=True

run(‘’’
samtools index {_input}
‘’‘)
```

execute a shell script in parallel (with concurrent=True). The step process can consists of arbitrary python statements and execute multiple step actions. For example,

```python
process:
try:


action1()



	except RuntimeError:

	action2()



```

execute action1 and action2 if action1 raises an error.

```python
process:
for par in [‘-4’, ‘-6’]:


run(‘command with ${par}’)


```

executes commands in a loop. This is similar to

`
pars = ['-4', '-6']
input: for_each=pars
process:
run('command with ${_pars}')
`

but the for loop version would not be able to be executed in parallel. Note that SoS actions can be used outside of step process but only statements specified after the process keyword can have runtime options and be executed in separate processes. That is to say,

`
pars = ['-4', '-6']
input: for_each=pars
run('command with ${_pars}')
`

is equivalent to

`
pars = ['-4', '-6']
input: for_each=pars
process:
run('command with ${_pars}')
`

but the latter can have additional runtime options to run commands in parallel

`
pars = ['-4', '-6']
input: for_each=pars
process: concurrent=True
run('command with ${_pars}')
`

Script format

SoS allows you to write process step in a special script format. For example,

```
[10]
input: group_by=’single’

process: concurrent=True
R(‘’’
pdf(‘${input}’)
plot(0, 0)
dev.off()
‘’‘)
```

can be written as

`
[10]
input: group_by='single'
R: concurrent=True
pdf('${_input}')
plot(0, 0)
dev.off()
`

The script is a string without quotation marks and the normal string interpolation will take place. Also, SoS will dedent the text (remove all common leading white spaces) so you can write the example as

```
[10]
input:


group_by=’single’



	R: concurrent=True

	pdf(‘${_input}’)
plot(0, 0)
dev.off()



```

if you prefer. Because all SoS keywords starts from the first column, indentation can help avoid trouble if your script contains strings such as [1] and option:.

More actions can be written in this way but runtime options can only be specified in the first action. For example, the following step calls two actions run and R in a step process.

```
[10]
input: group_by=’single’
run: concurrent=True


samtools index {_input}



	R:

	pdf(‘${_input}.pdf’)
plot(0, 0)
dev.off()



```

Although the script format is more concise and easier to read, it is limited to actions that accept a single string as input and is less flexible (no flow control etc).

SoS accepts a list of runtime options that controls how the step process is executed.
Option workdir

Default to current working directory.

Option workdir controls the working directory of the process. For example, the following step downloads a file to the resource_dir using command wget.

```python
[10]

run: workdir=resource_dir


wget a_url -O filename


```

Option concurrent

Default to False.

If the step process is repeated for different input files or parameters (using input options group_by or for_each), the loop process can be execute in parallel, up to the maximum number of concurrent jobs specified by command line option -j.

Option docker_image

If a docker image is specified (either a name, an Id, or a file), the action is assumed to be executed in the specified docker. The image will be automatically downloaded (pulled) or loaded (if a .tar or .tar.gz file is specified`) if it is not available locally. Note that this option only affect script executing actions such as run, python and perl so other actions such as check_command will be executed on the host machine even if it is included in the step process.

For example, executing the following script

```
[10]
python3: docker_image=’python’


set = {‘a’, ‘b’}
print(set)


```

under a docker terminal (that is connected to the docker daemon) will

	Pull docker image python, which is the official docker image for Python 2 and 3.

	Create a python script with the specified content

	Run the docker container python and make the script available inside the container

	Use the python3 command inside the container to execute the script.

Additional docker_run parameters can be passed to actions when the action
is executed in a docker image. These options include

	name: name of the container (option –name)

	tty: if a tty is attached (default to True, option -t)

	stdin_open: if stdin should be open (default to False, option -i)

	user: username (default o root, option -u)

	environment: Can be a string, a list of string or dictinary of environment variables for docker (option -e)

	volumes: string or list of string, extra volumes that need to be link, in addition to SoS mounted (/tmp, /Users (if mac), /Volumes (if [properly configured](https://github.com/bpeng2000/SOS/wiki/SoS-Docker-guide) under mac) and script file)

	volumes_from: container names or Ids to get volumes from

	working_dir: working directory (option -w), default working directory, or working directory set by runtime option workdir.

	port: port opened (option -p)

	extra_args: If there is any extra arguments you would like to pass to the docker run process (after you check the actual command of docker run of SoS

Option docker_file

This option allows you to import a docker from specified docker_file, which can be an archive file (.tar, .tar.gz, .tgz, .bzip, .tar.xz, .txz) or a URL to an archive file (e.g. http://example.com/exampleimage.tgz). SoS will use command docker import to import the docker_file. However, because SoS does not know the repository and tag names of the imported docker file, you will still need to use option docker_image to specify the image to use.

Option blocking (Not implemented)

Default to False.

The step process can only be executed by one instance of SoS. All other SoS instances will wait until one instance complete this step. Option blocking=True should be used for processes such as the creation of file index and downloading of resources.

Step action

Although arbitrary python functions can be used in SoS step process, SoS defines some `actions` (e.g. the run function in the aforementioned examples)
that can be used in a SoS script. The only difference between a SoS action and a regular Python function is that they can behave differently
in different run_mode. For example,

	Most SoS actions return 0 directly in dryrun mode.

	Some SoS actions such as check_command work in both run and dryrun mode so that you can check if you script can be executed by running it in dryrun mode.

Because SoS executes all step processes in dryrun mode for the planning of large workflows, it is important to enclose data processing steps in SoS actions. Otherwise these python statement might be executed multiple times.

It is easy to define your own actions. All you need to do is to define a function and decorate it with a SoS_Action decorator. For example

```python

from pysos import SoS_Action

@SoS_Action(run_mode=’run’)
def my_action(parameters):



	do_something_with_parameters

	return 1






```

run_mode=’run’ can also be run_mode=(‘dryrun’, ‘run’) or run_mode=’dryrun’ indicating in which mode the function will be executed (instead of returning 0 directly).

Action sos_run

Action sos_run(workflow, source) executes a specified workflow. The workflow can be a single workflow, a subworkflow (e.g. A_-10), or a combined workflow (e.g. A + B). Because the workflow is executed from a step, it takes step _input as the input of the nested workflow and it can access local step variables. For example,

```
import random

[simulate]
output:   ‘result_${_reps}.txt’
run:
simulate_experiment –seed=${seed} –output=${_output}

[10]
reps = range(100)
input: for_each=’reps’
outout: ‘result_${_reps}.txt’

seed = random.randint(1, 2**32)
sos_run(‘simulate’)
```

would run the nested pipeline simulate (which is a single step in this example) 100 times with their own seed, and _reps.

The workflow can be defined in the current script, or in other SoS scripts, in which case the name or full path of the SoS script should be provided to parameter source. For example,

`
[myworkflow]
sos_run('A+B', source="AB.sos")
`

defines a nested workflow with workflow A and/or B defined in AB.sos. The nested workflow is a combination of two workflows A and B with their own parameters sections. SoS searches the specified files in the current working directory, the directory of the master script, and a search path specified by variable sos_path defined in the SoS global configuration file (~/.sos/config.json), and will produce an error if no file can be found.

Action run, bash, sh, csh, tcsh, zsh

Actions run(script) and bash(script) accepts a shell script and execute it using bash. sh, csh, tcsh, zsh uses respective shell to execute the provided script.

Action python and python3

Action python(script) and python3(script) accepts a Python script and execute it with python or python3, respectively.

Because SoS can include Python statements directly in a SoS script, it is important to note that embedded Python
statements are interpreted by SoS and the python and python3 actions are execute in separate processes without
access to the SoS environment.

For example, the following SoS step execute some python statements within SoS with direct access to SoS variables
such as input, and with result writing directly to the SoS environment,

```python
[10]
for filename in input:



	with open(filename) as data:

	






```

while

```python
[10]
input: group_by=’single’

python:


	with open(${input!r}) as data:

	result = ${input!r} + ‘.res’
...



```

composes a Python script for each input file and calls separate Python interpreters to execute them. Whereas
the Python statement in the first example will always be executed, the statements in python will not be executed
in dryrun mode.

Action R and check_R_library

Action R(script) exexute the passed script using Rscript command. Action check_R_library accept an R library and optionally can check for required versions. If the libraries are not available, it will try to install it from [CRAN](https://cran.r-project.org/), [bioconductor](https://www.bioconductor.org/), or [github](https://github.com/). Github package name should be formatted as repo/pkg. Action check_R_library is available in both run and dryrun mode.

For example, check_R_library(‘edgeR’) will check and install (if necessary) edgeR from bioconductor. check_R_library(‘stephens999/ashr’) will check and install ashr package from a github repository https://github.com/stephens999/ashr.

check_R_library can also be used to check for required version of packages. For example:

`
check_R_library('edgeR', '3.12.0')
`
will result in a warning if edgeR version is not 3.12.0, and

Multiple versions is allowed, for example:
`
check_R_library('edgeR', ['3.12.0', '3.12.1'])
`
Or, simply:
`
check_R_library('edgeR', '3.12.0+')
`
It is also possible to restrict package to old version, for example:
`
check_R_library('ggplot2', '1.0.0-')
`

Note that version mismatch triggers a warning message, not an error. If you would like to enforce certain version, use

`
fail_if(check_R_library('ggplot2', '1.0.0+') != 0, 'Version 1.0.0 or newer version of ggplot2 is required')
`

Action perl, ruby

Action perl(script) execute the passed script using perl interpreter. Action ruby(script) execute the passed script using ruby interpreter.

Action node, JavaScript

Action node(script) and JavaScript(script) execute the passed script using node interpreter.

Action docker_build

Build a docker image from an inline Docker file. The inline version of the action currently does not support adding any file from local machine because the docker file will be saved to a random directory. You can walk around this problem by creating a Dockerfile and pass it to the action through option path. This action accepts all parameters as specified in https://docker-py.readthedocs.org/en/stable/api/#build because SoS simply pass additional parameters to the build function.

For example, the following step builds a docker container for [MISO](http://miso.readthedocs.org/en/fastmiso/) based on anaconda python 2.7.

```
[build_1]
# building miso from a Dockerfile
docker_build: tag=’mdabioinfo/miso:latest’


# Dockerfile to build MISO container images
# Based on Anaconda python
############################################################

# Set the base image to anaconda Python 2.7 (miso does not support python 3)
FROM continuumio/anaconda

# File Author / Maintainer
MAINTAINER Bo Peng <bpeng@mdanderson.org>

# Update the repository sources list
RUN apt-get update

# Install compiler and python stuff, samtools and git
RUN apt-get install –yes 


build-essential gcc-multilib gfortran apt-utils libblas3 liblapack3 libc6 cython samtools libbam-dev bedtools wget zlib1g-dev tar gzip


WORKDIR /usr/local
RUN pip install misopy




```

Action download

Action download(URLs, dest_dir=’.’, dest_file=None, decompress=False) download files from specified URLs, which can be a list of URLs, or a string with tab, space or newline separated URLs.

	If dest_file is specified, only one URL is allowed and the URL can have any form.

	Otherwise all files will be downloaded to dest_dir. Filenames are determined from URLs so the URLs must have the last portion as the filename to save.

	If decompress is True, .zip file, compressed or plan tar (e.g. .tar.gz) files, and .gz files will be decompressed to the same directory as the downloaded file.

For example,

```
[10]
GATK_RESOURCE_DIR = ‘/path/to/resource’
GATK_URL = ‘ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/2.8/hg19/‘


	download:   dest=GATK_RESOURCE_DIR

	${GATK_URL}/1000G_omni2.5.hg19.sites.vcf.gz
${GATK_URL}/1000G_omni2.5.hg19.sites.vcf.gz.md5
${GATK_URL}/1000G_omni2.5.hg19.sites.vcf.idx.gz
${GATK_URL}/1000G_omni2.5.hg19.sites.vcf.idx.gz.md5
${GATK_URL}/dbsnp_138.hg19.vcf.gz
${GATK_URL}/dbsnp_138.hg19.vcf.gz.md5
${GATK_URL}/dbsnp_138.hg19.vcf.idx.gz
${GATK_URL}/dbsnp_138.hg19.vcf.idx.gz.md5
${GATK_URL}/hapmap_3.3.hg19.sites.vcf.gz
${GATK_URL}/hapmap_3.3.hg19.sites.vcf.gz.md5
${GATK_URL}/hapmap_3.3.hg19.sites.vcf.idx.gz
${GATK_URL}/hapmap_3.3.hg19.sites.vcf.idx.gz.md5



```

download the specified files to GATK_RESOURCE_DIR. The .md5 files will be automatically used to validate the content of the associated files. Note that

SoS automatically save signature of downloaded and decompressed files so the files will not be re-downloaded if the action is called multiple times. You can however still still specifies input and output of the step to use step signature

```
[10]
GATK_RESOURCE_DIR = ‘/path/to/resource’
GATK_URL = ‘ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/2.8/hg19/‘
RESOUCE_FILES =  ‘’‘1000G_omni2.5.hg19.sites.vcf.gz


1000G_omni2.5.hg19.sites.vcf.gz.md5
1000G_omni2.5.hg19.sites.vcf.idx.gz
1000G_omni2.5.hg19.sites.vcf.idx.gz.md5
dbsnp_138.hg19.vcf.gz
dbsnp_138.hg19.vcf.gz.md5
dbsnp_138.hg19.vcf.idx.gz
dbsnp_138.hg19.vcf.idx.gz.md5
hapmap_3.3.hg19.sites.vcf.gz
hapmap_3.3.hg19.sites.vcf.gz.md5
hapmap_3.3.hg19.sites.vcf.idx.gz
hapmap_3.3.hg19.sites.vcf.idx.gz.md5’‘’.split()


input: []
output:  [os.path.join(GATK_RESOURCE_DIR, x) for x in GATK_RESOURCE_FILES]
download([‘${GATK_URL}/${x}’ for x in GATK_RESOURCE_FILES], dest=GATK_RESOURCE_DIR)
```

Note that the download action uses up to 5 processes to download files. You can change this number by adjusting system configuration sos_download_processes.

Action check_command

Action check_command(cmd, pattern) check existence of command or the output of the command. This action works in both dyrun and run mode so it can be used to check the existence of command in dryrun mode.

For example, if a script contains step

`python
[100]
check_command('tophat')
run('tophat ...')
`

Command ‘sos run script -d’ would check the existence of command tophat without actually running
the tophat ... command.

Action check_command(cmd, pattern) execute specified cmd and searches specified pattern in its output. pattern should be one or a list of python regular expressions (see [Python re module](https://docs.python.org/2/library/re.html), especially the search function for details). It raises an exception if the output does not match any of the patterns. This function is usually used to check the version of commands.

For example, action

`
check_command('STAR --version', ['2.4.0', '2.5.0'])
`
checks the output of command STAR –version and raises an error if it does not contain string 2.4.0 or 2.5.0.

Note that

	check_command will return a non-zero value if the command exist but returns non-zero value (e.g. because of incorrect command line argument). A warning message will also be printed.

	check_command will timeout after 2 seconds because it is intended to check basic information of specified command. The action will produce a warning message and return 1 in this case.

Action fail_if

Action fail_if(expr, msg=’‘) raises an exception with msg (and terminate the execution of the workflow if the exception is not caught) if expr returns True.

Action warn_if

Action warn_if(expr, msg) yields a warning message msg if expr is evaluate to be true.

Utility functions and logger

SoS exposes a few utility functions that can be helpful from time to time.

Function get_output

Function get_output(cmd) returns the output of command (decoded in UTF-8), which is a shortcut for subprocess.check_output(cmd, shell=True).decode(). It is worth noting that SoS kills any function call after 5 seconds in dryrun mode so you will need to put this function call inside a step process if it will take more than 5 seconds to execute.

Function expand_pattern

Function expand_pattern is the function alternative to output option pattern.

`python
output: expand_pattern('{a}_{b}.txt')
`

is equivalent to

`python
output: pattern='{a}_{b}.txt'
`

It can however be used if you would like to post-process outcome of the pattern option, for example,

`
output: [x for x in expand_pattern('{a}_{b}.txt') if '200' not in x]
`

removes output files if the output file contains 200.

SoS logger object

The SoS logger object is a logging object used by SoS to produce various outputs. You can use this object
to output error, warning, info, debug, and trace messages to terminal. For example,

`
[0]
logger.info('I am at ${step_name}')
`

would print a logging message I am at default_0 when the first step is execute.

`bash
$ sos run test.sos
INFO: Execute default_0:
INFO: input: []
INFO: I am at default_0
INFO: output: unspecified
`

Auxiliary workflow steps (Not implemented)

Auxiliary steps are special steps that are used only when a target is needed but not available. Such steps are defined in the format of

```python
[step_name_without_index : target=pattern]

step_input = expression involving step_output

input:
depends:
action()

```

where

	Step name does not have an index.

	An option target specifies that pattern of files that triggers the step.

	There is no output option.

	step_input should be explicitly calculated from a SoS provided step_output

For example,

```python
[index_bam : target=’*.bam.bai’]
#
# index bam file if its index is needed

# input file should be filename.bam if the output is filename.bam.bai
step_input = [x[:-4] for x in step_output]

input: group_by=’single’

# create ${_input}.bai from ${_input}
run:

samtools index ${_input}

```

defines a step called index_bam. When a file with extension *.bam.bai is required but does not exist,
for example when the following step

```python
[align_100]

depends: input[0] + ‘.bai’
...

```

is executed with input [‘A1.bam’], SoS will check if there is an auxiliary step to produce it and
call that step with step_output=[‘A1.bam.bai’] but no step_input. In this example the index_bam step
will figure out what the input files are needed (step_input=...) and execute the step as a regular SoS step
if files specified by step_input exist, and execute other auxiliary steps to produce required files otherwise.

You might have already realized that an auxiliary step is a makefile style step and you can use this technique to build complete
workflows in a way similar to [snakemake](https://bitbucket.org/johanneskoester/snakemake). That is to say, you can define multiple
auxiliary steps (rules in snakemake’s term) and let SoS determine what steps to execute depending on what workflow target to produce.
You can even mix the forward, input-oriented style with backward, output-oriented style in SoS. However, auxiliary steps are
designed to be helper steps that could be called multiple times during the execution of a workflow. If you are strongly inclined
to the makefile-like rule-based workflow system, make or snakemake should be better because they are specifically designed around
that paradigm.

Execution of workflows

dryrun, prepare, and run mode

A sos script will be by default executed three times, in dryrun, prepare and run modes. Besically,

	The dryrun mode will check syntax errors of the script and execute actions that are executable in dryrun mode (e.g. actions such as check_command to check the existence of commands).

	The prepare mode will prepare the execution of the script by, for example, downloading required resources and execute actions that are executable in prepare mode (e.g. action download to download required resources).

	The run mode will execute all steps.

Syntax and basic execution errors are collected in dryrun and prepare mode to be reported altogether, whereas other runtime errors will terminate the execution of script in run mode. In addition, all expressions and statements will be terminated after 5 seconds in `dryrun` mode so all time-consuming actions should be executed only in run mode. If you are on a particularly slow machine, you can relax this by setting an option sos_dryrun_timeout in ~/.sos/config.json (see section [configuration file](#configuration-file) for details.

For example, with the following (incomplete) script

```python
[0]
download(‘hg19 reference genome’)

[10]
check_command(‘fastqc’)
run:


fastqc ...


[20]
run: docker_image=’ubuntu’


script running in docker


[30]
check_command(‘tophat’)
run:


tophat ...


```

Running this script will
* execute the script in dryrun mode to check the existence of commands fastqc and tophat and terminate if any of the commands does not exist.
* execute the script in prepare mode to execute download action to download hg19 reference genome and pull the ubuntu docker image.
* execute the script in run mode to execute all steps.

You can execute a script in different mode using different subcommands
`bash
sos dryrun script
sos prepare script
sos run script
`

or using options of the run subcommand

`bash
dryrun mode only
sos run -d script
dryrun and prepare mode only
sos run -p script
dryrun prepare and run mode (default)
sos run script
`

or using the sos-runner command

`bash
sos-runner -d script
sos-runner -p script
sos-runner script
`

Configuration file

SoS allows you to create a file ~/.sos/config.json as the global configuration file for all SoS scripts. The content of this file will be read before the execution of any SoS script and be available in the CONFIG variable.

SoS currently support the following configuration variables

	sos_path (default to []): A list of directories from which sos will try to locate a script if the script is not in the current directory. For example, if you set sos_path to [‘~/scripts’], sos run myscript.sos will execute ~/scripts/myscript.sos if myscript.sos does not exist in the current directory.

	sos_dryrun_timeout (default to 5): Time in seconds SoS waits for the completion of a SoS statement or action in dryrun mode before it terminates the execution

	sos_download_processes (default to 5): Number of download processes to download files specified in action download.

The default value of 5 seconds for option sos_dryrun_timeout is usually good enough but you can set it to a longer time if you are working on a machine with, for example, slow disk access. To change this option, you will need to

	Create a file ~/.sos/config.json if it does not exist.

	Replace the content of the file with the following or add the key to the file. Note that JSON requires double quote for strings so ‘sos_dryrun_timeout’ is not allowed.


```json
#
# global sos configuration file
#
{


“sos_dryrun_timeout”: 10



}

You can put machine-dependent settings in this file (e.g. password to a MySQL database) to be used by all SoS scripts but please keep in mind that your script will become less portable with these global settings.

### Parallel execution
Logically speaking, for a given script and workflow, SoS will


	Evaluate parameters with either command line input or their default values

	Evaluate the rest of steps in numeric order



Actual execution order depends on step actions, input output options of SoS steps, and option -j.
In the sequential execution mode (by default),
all steps are executed one by one with auxillary steps called when necessary. If a script is written without any step option and
input and output files, it will be executed sequentially even in parallel execution mode (with -j option).

If the steps are described with necessary input and output information, steps in SoS workflows can be executed in parallel. The
following figure illustrates the impact input/output options on the execution order of workflows. Note that a step with
unknown input (no input at present step and no output at previous step) can only be executed after all its previous steps
are completed can become bottlenecks of the workflow.

[[/media/workflow.jpg]]





          

      

      

    


    
         Copyright 2016, Bo Peng.
    

  _Sidebar.html


    
      Navigation


      
        		Script of Scripts »

 
      


    


    
      
          
            
  [Wiki Home](https://github.com/bpeng2000/SOS/wiki)


Documentation
- [Terminology & Grammer](Documentation#terminology–grammer)
- [Language (Python)](Documentation#language-python)




		[Raw multi-line strings](Documentation#raw-multi-line-strings)


		[String interpolation](Documentation#string-interpolation)


		[Conversion and format](Documentation#conversion-and-format)










		[File header](Documentation#file-header)





		[Comments](Documentation#comments)





		[Global definitions](Documentation#global-definitions)





		
		[Command line options](Documentation#command-line-options)


		
		[Optional arguments](Documentation#optional-arguments)


		[Required arguments](Documentation#required-arguments)














		
		[Workflow definitions](Documentation#workflow-definitions)


		
		[Single workflow](Documentation#single-workflow)


		[Multiple workflows](Documentation#multiple-workflows)


		[Shared workflow steps](Documentation#shared-workflow-steps)


		[Subworkflow](Documentation#subworkflow)


		[Combined workflow](Documentation#combined-workflow)


		[Nested workflow](Documentation#nested-workflow)














		
		[Workflow steps](Documentation#workflow-steps)


		
		
		[Step options](Documentation#step-options)


		
		[Option skip](Documentation#option-skip)


		[Option sigil](Documentation#option-sigil)


		[Option alias](Documentation#option-alias)


		[Option target (Not implemented)](Documentation#option-target-not-implemented)














		
		[Step input](Documentation#step-input)


		
		[Input files](Documentation#input-files)


		[Option filetype](Documentation#option-filetype)


		[Option group_by](Documentation#option-group_by)


		[Option for_each](Documentation#option-for_each)


		[Option paired_with](Documentation#option-paired_with)


		[Option pattern](Documentation#option-pattern)


		[Option skip](Documentation#option-skip)


		[Option dynamic (Not implemented)](Documentation#option-dynamic-not-implemented)


		[Summary](Documentation#summary)














		
		[Step output](Documentation#step-output)


		
		[Output files](Documentation#output-files)


		[Option pattern](Documentation#option-pattern)


		[Option dynamic](Documentation#option-dynamic)














		[Step dependencies](Documentation#step-dependencies)





		
		[Step process](Documentation#step-process)


		
		[Step process](Documentation#step-process)


		[Script format](Documentation#script-format)


		[Option workdir](Documentation#option-workdir)


		[Option concurrent](Documentation#option-concurrent)


		[Option docker_image](Documentation#option-docker_image)


		[Option docker_file](Documentation#option-docker_file)


		[Option blocking (Not implemented)](Documentation#option-blocking-not-implemented)














		
		[Step action](Documentation#step-action)


		
		[Action sos_run](Documentation#action-sos_run)


		[Action run, bash, sh, csh, tcsh, zsh](Documentation#action-run-bash-sh-csh-tcsh-zsh)


		[Action python and python3](Documentation#action-python-and-python3)


		[Action R and check_R_library](Documentation#action-r-and-check_r_library)


		[Action perl, ruby](Documentation#action-perl-ruby)


		[Action node, JavaScript](Documentation#action-node-javascript)


		[Action docker_build](Documentation#action-docker_build)


		[Action download](Documentation#action-download)


		[Action check_command](Documentation#action-check_command)


		[Action fail_if](Documentation#action-fail_if)


		[Action warn_if](Documentation#action-warn_if)


























		
		[Utility functions and logger](Documentation#utility-functions-and-logger)


		
		[Function get_output](Documentation#function-get_output)


		[Function expand_pattern](Documentation#function-expand_pattern)


		[SoS logger object](Documentation#sos-logger-object)














		[Auxiliary workflow steps (Not implemented)](Documentation#auxiliary-workflow-steps-not-implemented)





		
		[Execution of workflows](Documentation#execution-of-workflows)


		
		[dryrun, prepare, and run mode](Documentation#dryrun-prepare-and-run-mode)


		[Configuration file](Documentation#configuration-file)


		[Parallel execution](Documentation#parallel-execution)

















User Interface
- [Command sos](User-Interface#command-sos)




		
		[subcommand run](User-Interface#subcommand-run)


		
		[Run modes (option -d, -p, -r and -f)](User-Interface#run-modes-option-d-p-r-and-f)


		[Use of configuration file (option -c)](User-Interface#use-of-configuration-file-option-c)














		[subcommand dryrun](User-Interface#subcommand-dryrun)





		[subcommand prepare](User-Interface#subcommand-prepare)





		[subcommand show](User-Interface#subcommand-show)





		[subcommand analyze (or summarize) (Not Implemented)](User-Interface#subcommand-analyze-or-summarize-not-implemented)





		[TBD Features (Not Implemented)](User-Interface#tbd-features-not-implemented)













		[Command sos-runner](User-Interface#command-sos-runner)







          

      

      

    


    
        © Copyright 2016, Bo Peng.
    

  

search.html


    
      Navigation


      
        		Script of Scripts »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016, Bo Peng.
    

  

_static/down.png





Feature-comparison.html


    
      Navigation


      
        		Script of Scripts »

 
      


    


    
      
          
            
  The following is a brief comparison between features of major workflow systems used in bioinformatics community. The content is based on our survey of features of these systems and there is no guarantee of comprehensiveness or accuracy of the content. Please [let us know](email:bpeng@mdanderson.org) if you would like to add more features or system to compare, or if you notice any problem with the content.



Features      | [SoS](https://github.com/bpeng2000/SOS) | [Snakemake](https://bitbucket.org/snakemake/snakemake/wiki/Home)  | [CWL](http://www.commonwl.org/draft-3/) | [Galaxy](https://galaxyproject.org/) |

————- |:————-:| :———:|:—–:|:—–:|

Language features | | | | |

Script | step-based, Pythonish | rule-based, Pythonish | CWL | XML |

Language | Python | Python | Javascript/ECMAScript 5.1 | API with Python, JavaScript, and Java bindings |

Expression | Yes | Yes | Yes | ? |

Statements | Yes | Yes | No | ? |

Interface | | | | |

command line | Yes | Yes | Yes | yes |

GUI |No | No | No | Yes (Web)|

API | Yes | Yes? | No | Yes (web) |

Execution features | | | | |

Parallel execution | Yes | Yes | ?| Yes|

Runtime signature | Yes | Yes | Implementation-dependent | ? |

Workflow features | | | | |

Create workflow from executed jobs| | | | Yes |

Workflow repository |No |Yes (github)|? |Yes|

Sub workflow | Yes | Yes | No | No |

Combined workflow | Yes | No | No | No |

Nested workflow | Yes | No | No | Yes |

#include | Yes | Yes | ? | ? |

Unique features | | | | |

make-file, rule based | | yes | | |

tempfile | |Yes | | |

direct script inclusion | Yes | ? | | |

Report (HTML) | | Yes | |  |





          

      

      

    


    
        © Copyright 2016, Bo Peng.
    

  

_static/up.png





User-Interface.html


    
      Navigation


      
        		Script of Scripts »

 
      


    


    
      
          
            
  ## Command sos
Command sos accepts a number of subcommands (similar to svn, git etc). Its syntax follows


`bash
sos subcommand [subcommand-options]
`


You can use command


```bash
$ sos -h
usage: sos [-h] [–version] {run,dryrun,prepare,show} ...

A workflow system for the execution of commands and scripts in different
languages.

		optional arguments:

		

		
-h, --help
		show this help message and exit

		
--version
		show program’s version number and exit

		subcommands:

		
		{run,dryrun,prepare,show}

		run Execute a SoS script
dryrun Execute a SoS script in dryrun mode
prepare Execute a SoS script in prepare mode
show Show details of a SoS script

Use ‘sos cmd -h’ for details about each subcommand. Please contact Bo Peng
(bpeng at mdanderson.org) if you have any question.
```


to get a list of subcommands with brief descriptions and


`bash
sos subcommand -h
`


to get detailed description of a particular subcommand.


### subcommand run


```
$ sos run -h
usage: sos run [-h] [-j JOBS] [-c CONFIG_FILE] [-d] [-p] [-r] [-f]

[-v {0,1,2,3,4}]
SCRIPT [WORKFLOW]

Execute a workflow defined in script

		positional arguments:

		
		SCRIPT A SoS script that defines one or more workflows. The

		script can be a filename or a URL from which the
content of a SoS will be read.

		WORKFLOW Name of the workflow to execute. This option can be

		ignored if the script defines a default workflow (with
no name or with name default) or defines only a
single workflow. A subworkflow or a combined workflow
can also be specified, where a subworkflow executes a
subset of workflow (name_steps where steps can be
n (a step n), -n (up to step n), n-m (from
step n to m), and n- (from step n)), and a
combined workflow executes to multiple (sub)workflows
combined by + (e.g. A_0+B+B).

		optional arguments:

		

		
-h, --help
		show this help message and exit

		
-j JOBS
		Number of concurrent process allowed. A workflow is by
default executed sequentially (-j 1). If a greater
than 1 number is specified SoS will execute the
workflow in parallel mode and execute up to specified
processes concurrently. These include looped processes
within a step (with runtime option concurrent=True)
and steps with non-missing required files.

		
-c CONFIG_FILE
		A configuration file in the format of YAML/JSON. The
content of the configuration file will be available as
a dictionary CONF in the SoS script being executed.

		-v {0,1,2,3,4}, –verbosity {0,1,2,3,4}

		Output error (0), warning (1), info (2), debug (3) and
trace (4) information to standard output (default to
2).

		Run mode options:

		SoS scripts are by default executed in run mode where all the script is
run in dryrun mode to check syntax error, prepare mode to prepare
resources, and run mode to execute the pipelines. Run mode options allow
you to check the script or download resources without actually running the
workflow.

		
-d
		Execute the workflow in dryrun mode in which step
processes are executed normally but with most SoS
actions return directly. SoS also produces diagnoistic
warning messages in this mode.

		
-p
		Execute the workflow in dyrun mode, and then
preparation mode in which SoS prepare the execution of
workflow by, for example, download required resources
and docker images.

		
-f
		Execute the workflow in a special run mode that
ignores saved runtime signatures and re-execute all
the steps.

Arbitrary parameters defined by the [parameters] step of the script, and
[parameters] steps of other scripts if nested workflows are defined in other
SoS files (option source). The name, default and type of the parameters are
specified in the script. Single value parameters should be passed using option
–name value and multi-value parameters should be passed using option
–name value1 value2.
```


Examples of the sos run include


`bash
sos run -h                       # get help message
sos run myscript                 # run default workflow defined in myscript
sos run myscript align           # run workflow align defined in myscript
sos run myscript align+call      # run a combined workflow align+call
sos run myscript align -h        # help message for the align workflow defined in myscript
sos run -d myscript align        # run align workflow in dryrun mode
sos run -dpr myscript            # run a workflow in dryrun, prepare and then run mode
`


The list of acceptable workflow options for script can be displayed using command


`bash
sos show script
`


#### Run modes (option -d, -p, and -f)


Please refer to [documentation](Documentation#dryrun-prepare-and-run-mode) for details on executing a SoS script in dryrun, prepare and run mode.


#### Use of configuration file (option -c)


The -c option allows the specification of a configuration file in YAML format. YAML is a superset of JSON so any configuration file in JSON format should also be acceptable. Variables defined in the configuration file are available in SoS script as a dictionary CONFIG. For example


`
gatk_path = CONFIG['gatk_path']
`


or equivalently


`
gatk_path = CONFIG.gatk_path
`


requires a configuration file with gatk_path defined. If you do not want to require a configuration file, you can define gatk_path as


`
gatk_path = CONFIG.get('gatk_path', '/path/to/default/gatk')
`


In this way, a default path would be used if no configuration file is specified (so CONFIG is an empty dictionary) or if gatk_path is not defined in the specified configuration file.


If you would further want to allow modification of this value from command line, you can place this definition in the [parameters] section


`
[parameters]
# path to gatk executable
gatk_path = CONFIG.get('gatk_path', '/path/to/default/gatk')
`


In this way, users have the freedom to use the default value, define a value in a configuration file, and provide another value from command line.


### subcommand dryrun


This command execute the script in dryrun mode. It is alias to command sos run -d.


### subcommand prepare


This command execute the script in prepare mode. It is alias to command sos run -p.


### subcommand show


```bash
$ sos show -h
usage: sos show [-h] [-v {0,1,2,3,4}] SCRIPT [WORKFLOW]

The show command displays details of all workflows defined in a script,
including description of script, workflow, steps, and command line parameters.
The output can be limited to a specified workflow (which can be a subworkflow
or a combined workflow) if a workflow is specified.

		positional arguments:

		
		SCRIPT A SoS script that defines one or more workflows. The

		script can be a filename or a URL from which the
content of a SoS will be read.

		WORKFLOW Name of the workflow to execute. This option can be

		ignored if the script defines a default workflow (with
no name or with name default) or defines only a
single workflow. A subworkflow or a combined workflow
can also be specified, where a subworkflow executes a
subset of workflow (name_steps where steps can be
n (a step n), -n (up to step n), n-m (from
step n to m), and n- (from step n)), and a
combined workflow executes to multiple (sub)workflows
combined by + (e.g. A_0+B+B).

		optional arguments:

		

		
-h, --help
		show this help message and exit

		-v {0,1,2,3,4}, –verbosity {0,1,2,3,4}

		Output error (0), warning (1), info (2), debug (3) and
trace (4) information to standard output (default to
2).


```


Note that


`bash
sos show script
`


lists the workflows defined in script and


`bash
sos show script workflow
`


displays detailed information of specified workflow.


### subcommand analyze (or summarize) (Not Implemented)


SoS saves runtime information during the execution of SoS script. Such information includes the start and end time of each step, CPU and memory usage, and the size of the current working directory. Users can learn the details of a previous run by running command


`bash
sos analyze
`


from the directory where the script was excuted. If the script has been executed multiple times, you can use option -l (list) to list all available runtime IDs,


`bash
sos analyze -l
`


and use command


`bash
sos analyze ID
`


to display details of that particular run.


Other options include



		-s: summarize runtime information of all previous runs.


		-o: write a report to specified file





### TBD Features (Not Implemented)



		subcommand `convert`:
It might be useful to convert SoS scripts to other workflow language, at least partially. A complete translation is unlikely to be possible so SoS might simply export the SoS script to shell scripts (sos export) and create a pipeline for the master shell script.


		subcommand `export`:





`bash
sos export script [workflow:steps] [workflow-options] [-d OUTPUT_DIR] [-f] [-h]
`


Export steps of workflow defined in script to script_dir. This command will write workflow_step.ext for each step exported with appropriate file extension ext (e.g. .R for [R](https://www.r-project.org/) script) and workflow.py to execute all the steps.



		subcommand `admin`:
Reserved for miscellaneous adminstrative actions such as the setting of user options.


		subcommand `edit`: potentially a GUI viewer and editor for SoS scripts.





These features might be implemented in the future when needs arise.


## Command sos-runner


Command sos-runner is a shortcut for sos run so


`bash
sos-runner script
`


is equivalent to


`bash
sos run script
`


This allows a SoS script to be executed directly if it is executable with shebang line


`
#!/usr/bin/env sos-runner
`




          

      

      

    


    
        © Copyright 2016, Bo Peng.
    

  

_static/comment-close.png





_static/comment.png





_static/plus.png





_static/down-pressed.png





_static/comment-bright.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/ajax-loader.gif





